DB Management Systems
Distributed: Spark

Joel Klein — jdk514@gwmail.gwu.edu

Spark Architecture

Spark? Architectural Diagram

Complex Simple
-) HDFS Architecture
Hadoop Architecture Metadata (Name, replicas, ...): Rack 0 NameNodes RackT
(. > Metadat@,ops" Namenode /homeffoo/data, 3, ...
[mo50] trmcker e Block ops . . . “
ors o = Read Datanodes Datanodes — . . .
= S ,
"=IE 0 = : = Replication 0B ‘. . . . : T :
- = \ ju Blocks |, . . .
== ~ | HENE -
=] Rack 1 \Write Rack 2
@ Map phase Reduce phase /

NameNode (Spark Driver) — @,“-

e Think of this as the master node. EEE-

e It is the node a user actually interfaces with to input
commands/configuration

e [t doesn’t need to necessarily be a crazy machine (specs wise) as it
doesn’t do any of the heavy lifting

DataNode (Worker/Executor)

e DataNode’s represent the true brute force behind Spark.
e They are the nodes that both store and process (in memory) the data
used by Sparks acyclic graph transformations
= Executors can load data through a number of different sources
 S3, FTP, local filesystem, Azure, Swift(??)
= Executors load the data into memory, rather than locally on disk
 These machines are usually beefier than the NameNode, as they need
to be able to process large amounts of data quickly

= These machines typically need more RAM since spark operates entirely in
memory

Resilient Distributed Dataset

« RDD’s are essentially like Series in Spark, designed for parallelized and
distributed operations.
= They are a collection of objects storing data
= Some key traits are:
* Immutability — once created they can not be changed
* Partitioned — the dataframes are split amongst a number of executors
* Typed — each record is statically typed (RDD[Long], RDD[String, Int, etc.])
 RDD’s can only be manipulated via transformations
= map, flatmap, filter, reduceByKey, join, cogroup

Directed Acyclic Graph (DAG)

* DAG is Sparks version of MapReduce. It is essentially a more verbose
implementation.

= Essentially it is the process of altering an RDD through a series of
transformations (as mentioned earlier)

Hadoop MapReduce Spark DAG
Iteration - 1 Iteration - 2
. s Iteration - 1 Reration -2 Iteration - n
HDFS HDFS R1 HDFS HOFS || mR1 L write read || MR1 \ MR1 \
—— __read N . . 48 Y
——— — =] '- Tuples
: ples
Data on Tuples | R2 Tuples | ... D%t;:" Lkt g MR2 e {on Disk)
Disk J (on Disk)J (on Disk)) I | Sl
: !) = ————————— Bl Input from MR3 i | MR3 ‘ MR3 | o‘;:p;lt -
Input from ‘ M3 / R3 stable 1 J1 | I ; avie
stable storage j
storage ' '

] | storage

MapReduce

DAG

* Always two operations in order
1. Map
2. Reduce

e Information is read from disk and saved out
to disk during each intermediary step

e Great for batch processing

e Can perform any combination of
transformations between RDD states

= MapReduce can be one of these
transformation processes

e |nitial data is read from disk, but all further
transformations take place solely in-memory

e Great for real-time processing and fast
iterative processes (training ML algorithms)

Programming in Spark

* One of the main reasons for the recent surge in Spark is due to its ease
of use through flexible API’s

* These API’s have SDKs for the following programming languages (there
may be more):

Scala

o Java

Python

sQL

o R

a

a

O

Spark on AWS

EMR (Elastic Map Reduce)

aWws

Amazon EMR
| Clusters
Security configurations
VPC subnets
Events

Help

Services ~

4

Resource Groups ~ *

Welcome to Amazon Elastic MapReduce

Amazon Elastic MapReduce (Amazon EMR) is a web service that enables businesses, researchers, data
analysts, and developers to easily and cost-effectively process vast amounts of data.

You do not appear to have any clusters. Create one now:

Create cluster

How Elastic MapReduce Works

Monitor
Upload your data and processing Configure and create your cluster by ~ Monitor the health and progress of
application to S3. specifying data inputs, outputs, cluster your cluster. Retrieve the output in S3.

size, security settings, etc.

Learn more Learn more Learn more

Enabling EMR Notebooks

Create Cluster - Quick Options (g savanced options

 However, to make things easier for
us, we're going to setup Spark so it
can connect to an AWS hosted

 Normally we could simply
instantiate the spark cluster using
a default software configuration

Software configuration Ju pyter note book or EMR Notebook
Release |emr-5.32.0 | ©
Applications = Core Hadoop: Hadoop 2.10.1, Hive 2.3.7, Hue I I
4.8.0, Mahout 0.13.0, Pig 0.17.0, and Tez 0.9.2 SOﬂwa re CD nflgu ratl On
HBase: HBase 1.4.13, Hadoop 2.10.1, Hive 2.3.7, Release _ v
Hue 4.8.0, Phoenix 4.14.3, and ZooKeeper 3.4.14 emr-5.32.0 0
Presto: Presto 0.240.1 with Hadoop 2.10.1 HDFS v Hadoop 210.1 Zeppelin 0.8.2
and Hive 2.3.7 Metastore
@) Spark: Spark 2.4.7 on Hadoop 2.10.1 YARN and JupyterHub 1.1.0 Tez 0.9.2
Zeppelin 0.8.2
PP Ganglia 3.7.2 HBase 1.4.13

Use AWS Glue Data Catalog for table metadata o

Custom Configuration Software

 For EMR Notebooks to work we need to configure a custom selection of
software for things to work.

o We can also enable Hive so we can take a second look at it's use cases

Software Configuration

Release |emr-5.32.0 v O

v Hadoop 2.10.1 Zeppelin 0.8.2 v Livy0.7.0

v JupyterHub 1.1.0 Tez 0.9.2 Flink 1.11.2
Ganglia 3.7.2 HBase 1.4.13 v Pig0.17.0

v Hive 2.3.7 Presto 0.240.1 ZooKeeper 3.4.14

v JupyterEnterpriseGateway 2.1.0 MXNet 1.7.0 Sqoop 1.4.7
Mahout 0.13.0 v Hue 4.8.0 Phoenix 4.14.3
Oozie 5.2.0 v Spark 2.4.7 HCatalog 2.3.7
TensorFlow 2.3.1

Reason for Custom Configuration

e There are a couple of reasons why we need to modify the configuration

o Adding JupyterHub and JupyterEnterpriseGateway enable us to connect via
JupyterNotebooks
* JupyterHub is a webserver-based version of Jupyter
* JupyterEnterpriseGateway enables JupyterHub to spin up notebooks on a

cluster of machines

= Adding Livy provides a REST driven API for spark that makes handling
concurrent asynchronous requests easier (basically makes the notebook
interactions work from the EMR perspective)

Creating an EMR Cluster cont.

Security and access

° Defining Security: EC2 key pair GW Course Key ~ € Learn howt
O WeI I | Sti | | Setu p t h e ECZ Permissions @ Default Custom

Use default IAM roles. If roles are not present, they will be automatically created
for you with managed policies for automatic policy updates.

key pair’ SO We Can EMR role EMR_DefaultRole €

B EC2 instance profile EMR_EC2_DefaultRole €
connect directly to the
master node

o create an EC2 key pair.

e Waiting:
= This shouldn't take any

longer than last time, but
we still do need to wait

Accessing Our EMR

E IVI R N Ote bOO kS Amazon EMR

| . EMR on EC2
 From the EMR service page, there is an | Clusters

option to setup an EMR Notebook, we'll

be using that to connect to our cluster Git repositories

e From here we can

¢ The Only th|ng we need tO deﬁne (beyond Cluster* @ Choose an existing cluster
providing a name), is the existing cluster Choose
for the notebook to connect Create a cluster @

PySpark

PySpark

e PySpark is the name of the python specific interface for python
programming in Spark

e One of its main benefits is ability to seamlessly leverage python for
distributed programming

e PySpark also heavily utilizes Dataframes an abstraction of RDD’s

= PySpark Dataframes work a lot like pandas dataframes, but have some
unique interfaces

Python vs Scala

Learning
Curve

Concurrency

Type safety

Ease of Use

Slower

Python is comparatively
easier to learn for Java
programmers because of its
syntax ~and standard
libraries.

Python does support
heavyweight process
forking using uwsgi but it
does not support true
multithreading.

Dynamically Typed
Language

Less verbose and
easy to use than
Scala

Several libraries for
Machine Learning and
Natural Language

Processing. o

Working with PySpark

Spark Session

Worker Node

* The spark session is the primary Srsoior Tomr

interface f Ki ith Spark's | -

interface for working with Sp e | [[
V\

API
= This means that we need an active worker Node

Executor a;e
spark session to do anything within \ -

¥ | Task Task
spark

= Creating the EMR Notebooks
provides us an easy mechanism to
hook into the spark session

SparkContext Cluster Manager

Source: hadoopsters.com/2020/10/26/spark-starter-guide-4-2-how-to-create-a-spark-session/

https://hadoopsters.com/2020/10/26/spark-starter-guide-4-2-how-to-create-a-spark-session/

Working with a Spark Session

 Normally we need to build a spark session (which can require some
complex networking for custom environments)
= spark = SparkSession.builder.appName("Python Spark SQL basic

example").config("spark.some.config.option", "some-value").getOrCreate()
= With the EMR Notebook we can simply call spark directly

Creating a spark Dataframe

* To create a spark Dataframe we need to tell spark to read in data from a
data source. This can be accomplished through several different
commands, like Hadoop:

e For our case, we’ll read in the same data from s3 from last class:
= spark.read.json("s3a://{s3_bucket}/ratebeer/*.json")

 Most datawarehousing applications use file types like parquet and avro

Alternative File Formats - Parquet and Avro

e Parquet and Avro are file types that emulate many of the compression
techniques provided by databases and archiving (think .zip or .targz)

= This means that unlike json and csv, these file types are focused around
data optimization

e Parquet is a columnar storage format, meaning that it focuses on storing
columns of data (compared to csv which is row focused)

e Avro is essentially a serialized version of JSON and has similarities to
protobuf
o Field names are abstracted away and data is stored in binary formatting

PySpark Lazy Evaluation

« RDD’s, and thus Dataframes, are lazily evaluated. This means that
transformations on the dataframe won’t be evaluated until actually
requested.

e This also means that only necessary transformations actually occur (to
an extent). This is part of the advantage to columnar data, as the entire
file/dataset may not need to be processed, but only a single column.

PySpark Streaming and SQL API

SQL in PySpark

* In addition to working with data loaded straight into a dataframe, we
can also query our data leveraging SQL through Spark's SQL API

e To accomplish this we need to simply create a temporary view of our
data the we can query against

= df.createOrReplaceTempView("beer_table")

 Now all we need to do is create a new Dataframe by querying our
existing information
= sql_table = spark.sql("SELECT * from beer_table LIMIT 10")

End Slide

EMSE 6992 — DBMS for Data Analytics

PySpark Terminal
(If Using SSH)

Once Connected Via SSH

 If everything was done correctly, we should be met with the following:

| @ hadoop@ip-172-31-28-177:~ - O < |

E:
E:
E:
E:
E:
E:
E:

EEEEREEE

?

Connecting to PySpark

| & hadoop@ip-10-229-95-173:~ - o X
al ()

e From the terminal, we are iy emmon: ot founds v
actually very easily able to
connect to hive

s We simply run: SOV eElLX B

= This should produce the hive
interface:

Spark REPL

e REPL stands for Read-Eval-Print-Loop

* The pyspark repl is effectively a python console
= This means that all generic python will run in the pyspark repl

e The key difference between pyspark repl and a generic python console
is the ability to leverage DAG operations to process RDD’s

= You can see when spark is being leveraged when you see the following in
the console:

