
DB Management Systems
Distributed: Spark
Joel Klein – jdk514@gwmail.gwu.edu





Spark? Architectural Diagram

Complex Simple



NameNode (Spark Driver)

• Think of this as the master node.

• It is the node a user actually interfaces with to input 
commands/configuration

• It doesn’t need to necessarily be a crazy machine (specs wise) as it 
doesn’t do any of the heavy lifting



DataNode (Worker/Executor)

• DataNode’s represent the true brute force behind Spark.
• They are the nodes that both store and process (in memory) the data 

used by Sparks acyclic graph transformations
▫ Executors can load data through a number of different sources

 S3, FTP, local filesystem, Azure, Swift(??)

▫ Executors load the data into memory, rather than locally on disk

• These machines are usually beefier than the NameNode, as they need 
to be able to process large amounts of data quickly
▫ These machines typically need more RAM since spark operates entirely in 

memory



Resilient Distributed Dataset

• RDD’s are essentially like Series in Spark, designed for parallelized and 
distributed operations.
▫ They are a collection of objects storing data

▫ Some key traits are:
 Immutability – once created they can not be changed

 Partitioned – the dataframes are split amongst a number of executors

 Typed – each record is statically typed (RDD[Long], RDD[String, Int, etc.])

• RDD’s can only be manipulated via transformations
▫ map, flatmap, filter, reduceByKey, join, cogroup



Directed Acyclic Graph (DAG)

• DAG is Sparks version of MapReduce. It is essentially a more verbose 
implementation.
▫ Essentially it is the process of altering an RDD through a series of 

transformations (as mentioned earlier)

Hadoop MapReduce Spark DAG



MapReduce

• Always two operations in order

1. Map

2. Reduce

• Information is read from disk and saved out 
to disk during each intermediary step

• Great for batch processing

DAG

• Can perform any combination of 
transformations between RDD states

▫ MapReduce can be one of these 
transformation processes

• Initial data is read from disk, but all further 
transformations take place solely in-memory

• Great for real-time processing and fast 
iterative processes (training ML algorithms)



Programming in Spark

• One of the main reasons for the recent surge in Spark is due to its ease 
of use through flexible API’s

• These API’s have SDKs for the following programming languages (there 
may be more):
▫ Scala

▫ Java

▫ Python

▫ SQL

▫ R





EMR (Elastic Map Reduce)



Enabling EMR Notebooks

• Normally we could simply 
instantiate the spark cluster using 
a default software configuration

• However, to make things easier for 
us, we're going to setup Spark so it 
can connect to an AWS hosted 
Jupyter notebook or EMR Notebook



Custom Configuration Software

• For EMR Notebooks to work we need to configure a custom selection of 
software for things to work.
▫ We can also enable Hive so we can take a second look at it's use cases



Reason for Custom Configuration

• There are a couple of reasons why we need to modify the configuration
▫ Adding JupyterHub and JupyterEnterpriseGateway enable us to connect via 

JupyterNotebooks
 JupyterHub is a webserver-based version of Jupyter

 JupyterEnterpriseGateway enables JupyterHub to spin up notebooks on a 
cluster of machines

▫ Adding Livy provides a REST driven API for spark that makes handling 
concurrent asynchronous requests easier (basically makes the notebook 
interactions work from the EMR perspective)



Creating an EMR Cluster cont.

• Defining Security: 
▫ We'll still setup the EC2 

key pair, so we can 
connect directly to the 
master node

• Waiting:
▫ This shouldn't take any 

longer than last time, but 
we still do need to wait





EMR Notebooks

• From the EMR service page, there is an 
option to setup an EMR Notebook, we'll 
be using that to connect to our cluster

• From here we can 

• The only thing we need to define (beyond 
providing a name), is the existing cluster 
for the notebook to connect





PySpark

• PySpark is the name of the python specific interface for python 
programming in Spark

• One of its main benefits is ability to seamlessly leverage python for 
distributed programming

• PySpark also heavily utilizes Dataframes an abstraction of RDD’s
▫ PySpark Dataframes work a lot like pandas dataframes, but have some 

unique interfaces



Python vs Scala





Spark Session

• The spark session is the primary 
interface for working with Spark's 
API
▫ This means that we need an active 

spark session to do anything within 
spark

▫ Creating the EMR Notebooks 
provides us an easy mechanism to 
hook into the spark session

Source: hadoopsters.com/2020/10/26/spark-starter-guide-4-2-how-to-create-a-spark-session/

https://hadoopsters.com/2020/10/26/spark-starter-guide-4-2-how-to-create-a-spark-session/


Working with a Spark Session

• Normally we need to build a spark session (which can require some 
complex networking for custom environments)
▫ spark = SparkSession.builder.appName("Python Spark SQL basic 

example").config("spark.some.config.option", "some-value").getOrCreate()

▫ With the EMR Notebook we can simply call spark directly



Creating a spark Dataframe

• To create a spark Dataframe we need to tell spark to read in data from a 
data source. This can be accomplished through several different 
commands, like Hadoop:

• For our case, we’ll read in the same data from s3 from last class:
▫ spark.read.json("s3a://{s3_bucket}/ratebeer/*.json")

• Most datawarehousing applications use file types like parquet and avro



Alternative File Formats - Parquet and Avro

• Parquet and Avro are file types that emulate many of the compression 
techniques provided by databases and archiving (think .zip or .targz)
▫ This means that unlike json and csv, these file types are focused around 

data optimization

• Parquet is a columnar storage format, meaning that it focuses on storing 
columns of data (compared to csv which is row focused)

• Avro is essentially a serialized version of JSON and has similarities to 
protobuf
▫ Field names are abstracted away and data is stored in binary formatting



PySpark Lazy Evaluation

• RDD’s, and thus Dataframes, are lazily evaluated. This means that 
transformations on the dataframe won’t be evaluated until actually 
requested.

• This also means that only necessary transformations actually occur (to 
an extent). This is part of the advantage to columnar data, as the entire 
file/dataset may not need to be processed, but only a single column.





SQL in PySpark

• In addition to working with data loaded straight into a dataframe, we 
can also query our data leveraging SQL through Spark's SQL API

• To accomplish this we need to simply create a temporary view of our 
data the we can query against
▫ df.createOrReplaceTempView("beer_table")

• Now all we need to do is create a new Dataframe by querying our 
existing information
▫ sql_table = spark.sql("SELECT * from beer_table LIMIT 10")



End Slide

EMSE 6992 – DBMS for Data Analytics 





Once Connected Via SSH

• If everything was done correctly, we should be met with the following:



Connecting to PySpark

• From the terminal, we are 
actually very easily able to 
connect to hive
▫ We simply run: $ pyspark

▫ This should produce the hive 
interface: >>>



Spark REPL

• REPL stands for Read-Eval-Print-Loop

• The pyspark repl is effectively a python console
▫ This means that all generic python will run in the pyspark repl

• The key difference between pyspark repl and a generic python console 
is the ability to leverage DAG operations to process RDD’s
▫ You can see when spark is being leveraged when you see the following in 

the console:


