
DB Management Systems:
SQL - MySQL
Joel Klein – jdk514@gwmail.gwu.edu





MySQL

• MySQL is a RDBMS (Relational Database 
Management System)
▫ Database means that it is designed for the storage 

of information
▫ Relational means that it conforms to the relational 

model

• The key design being that we are working with 
tabular data with interconnecting relationships
▫ Think PANDAS DataFrame!

Source: https://en.wikipedia.org/wiki/File:Relational_Model.svg



Terminology
• Instance: Installation or running application of the RDBMS

• Database: Collection of Tables, there can be multiple Databases on a 
single Instance

• Table: Matrix of data, there can be multiple Tables in a single Database

• Column: Features/data-types found within a Table

• Row (record/tuple): Group of Column-values that define a datapoint

• Primary Key: Column(s) that define a unique record in a Table

• Foreign Key: Column whose set of possible values is defined by a 
column within another Table

• Index: Column(s) in a Table that will be optimized for Queries

• Query: A command to extract information from a Database



Standard SQL Data Types
• Numeric
▫ INT – Integer ranging from -2147483648 to 2147483647
▫ BIGINT – Integer ranging from -9223372036854775808 to 9223372036854775807
▫ FLOAT(M,D) – Floating point number (M: Display Length, D: # of Decimals)
▫ DOUBLE(M,D) – Double precision floating point

• Datetimes
▫ DATE – YYYY-MM-DD
▫ DATETIME – YYYY-MM-DD HH:MM:SS (TIMESTAMP is same w/out symbols)
▫ TIME – HH:MM:SS

• String
▫ CHAR(M) – Fixed-length string of size M
▫ VARCHAR(M) – Variable sized string of max-size M
▫ BLOB/TEXT – Manner to store large objects (BLOB is for Binary objects, TEXT for text)

• NOTE: Additional types are supported (JSON), but they may differ between 
databases and/or have different functionality. 



Database

TableTable

MySQL Instance

Account ID Account Type Date Created Balance

123213 Checking 01/03/1986 1,003.23

124312 Savings 11/13/1999 5,452.32

312343 Investment 01/07/2003 12,321.01

142323 Checking 01/23/1996 42.34

432423 Checking 05/05/2016 243.00

Table

Column

INT VARCHAR DATE DOUBLE

Record

Primary Key



Our Entity-Relationship Model



Types of relationships

• One-to-One (1-1):
▫ This means that each entity in one table is linked to one entity in another table

• One-to-Many (1-m):
▫ This means that each entity in one table is linked to one or more entities in another table

• Many-to-Many (m-m):
▫ This means that one or more entities are linked to one or more entities in another table

• In Class:
▫ Identify each type of relationship in our ERM Model (previous slide)





So How Do We Access Our Data?

• SQL (Structured Query Language): A Database specific language 
designed for managing data in RDBMS
▫ While SQL has a overall generic structure, it does change from Database to 

Database (MySQL vs MSSQL vs Oracle vs etc.)

• We can run SQL commands directly off the database (command-line), 
from a GUI (MySQL workbench), or programmatically (python, java, 
etc.)





Selecting Information

• To get information out of our database we need to select the data
▫ “SELECT col1, col2, etc. FROM table”

 Ex. “SELECT text FROM statuses;”

 Ex. “SELECT text FROM EMSE6992.statuses”

▫ We can also select all columns using the “*” symbol
 Ex. “SELECT * FROM statuses”

• Lets run this in the workbench!





Filtering the Information

• Obviously there will be times where we want to subselect data (we may 
be looking for something specific).
▫ “SELECT * FROM statuses WHERE [NOT] condition1”

 Conditions are usually focused around column values

 Ex. “SELECT * FROM statuses WHERE location='Washington, DC'”

• We can combine conditions using logical statements AND/OR
▫ Ex. “SELECT * FROM users

WHERE location='Washington, DC' AND verified=1”



WHERE – Data Types

• WHERE conditional comparators/operators are type dependent
▫ String: =, !=, or LIKE (talk about shortly)

▫ Numeric: =, !=, >, <, >=, or <=

▫ Datetime: =, !=, >, <, >=, or <=
 For DATETIME’s we can simply provide a DATE

 DATE looks like DATE(“YYYY-MM-DD”)

• In Class:
▫ Write a query to find all of the statuses made on the January 1st, 2019



WHERE - LIKE

• The LIKE clause is a special comparator in SQL that enables partial string 
matching
▫ Using the LIKE clause with a string containing a ‘%’, the ‘%’ is treated as a wild 

character
 This means ‘%{word}%’ is effectively the REGEX ‘.*{word}.*’

▫ This means that we can find columns where only a certain key phrase exists

• Ex.
▫ “SELECT * FROM statuses WHERE text LIKE '%AI%';”

• In Class:
▫ Find all retweets that contain an @ symbol



WHERE - NULL

• Like many programming languages, SQL databases also have a means to 
indicate that no information is stored (versus an attentionally blank 
value) – NULL
▫ This is necessary as every record must have a value for every column

• Likewise, sometimes we need to evaluate if there are/are not any 
NULL’s in a column
▫ “SELECT cols FROM tbl WHERE col IS [NOT] NULL”



SELECT cont.

• Run the following query in MySQL Workbench:
▫ “SELECT text, name, description FROM statuses, users;”

• In Class:
▫ What is this query returning?

▫ Why can this be dangerous?

▫ How could we fix this?





Joining Tables

• What we achieved in the previous slide is called 
a table join
▫ This is the process where we join together data 

in our database to get a more comprehensive 
view of our data

• Joins come in a number of different forms:
▫ Inner Join
▫ Right Join
▫ Left Join

Right Join

Inner Join

Left Join

Source: https://www.codeproject.com/Articles/33052/Visual-
Representation-of-SQL-Joins



Proper Table Join

• The first example of a Join that we did is not advised
▫ It is not supported in all SQL databases
▫ It can lead to confusion and ambiguity in larger queries

• Correct table join:
▫ “SELECT [cols] FROM tbl1 LEFT JOIN tbl2 ON condition;”

• In Class:
▫ Rewrite our initial join in the correct format:

 “SELECT text, name, description FROM statuses, users;”



Multiple Joins

• Just like everything else (column selection, conditions) we can join 
together multiple tables
▫ However, this works slightly different than previous chains.

• Ex:
▫ "SELECT * FROM friends

JOIN users ON friends.friend_id = users.user_id

JOIN statuses ON statuses.user_id = users.user_id;"





Sorting Values

• Many times while working with data, we want to order them on some 
column(s)
▫ This is where the ORDER clause comes into play

• “SELECT col(s) FROM tb1 ORDER BY col1, [col2, etc.]”
▫ When providing multiple columns, it sorts the values in column order

• Ex.
▫ “SELECT * FROM statuses ORDER BY created_date”



Selecting Top Results

• In MySQL we can get the first x results using the LIMIT clause
▫ “SELECT * FROM tb1 LIMIT [x];”

• Ex.
▫ “SELECT * FROM users LIMIT 5;”

• This can be used in conjunction with ORDER BY to get the top/bottom X 
results for a table





Selecting the Minimum or Maximum

• We can get the MIN() or MAX() of columns, using their respective 
clauses
▫ “SELECT MIN(col) FROM tbl WHERE cond;”

• Ex
▫ “SELECT MAX(favorites_count) FROM statuses;”

• NOTE: MAX and MIN functions limit the number of records returned



SUM, AVG, COUNT

• SUM, AVG, and COUNT functions aggregate values across a table
▫ “SELECT SUM(col) FROM tbl;”

• In Class:
▫ Determine the average favorites_count for tweets that @ someone 

(include the @ symbol in the tweet’s text)





Grouping Elements

• Sometimes when selecting fields we want to group elements across a 
key identifier

• We can accomplish this goal using the GROUP BY clause. It states that 
we want to group our results by a given set of columns
▫ “SELECT colX FROM tbl GROUP BY colY;”

• In Class:
▫ Group the ‘statuses’ table by ‘user_id’



GROUP BY cont.

• When grouping elements we typically need to provide an aggregation 
function (AVG, SUM, COUNT, MIN, MAX, etc.), otherwise the group will 
pull top result for the given column

• In Class:
▫ Modify our previous exercise to look for the AVG favorites_count and 

retweet_count per user



Conditional Grouping

• When grouping elements in tables we usually want to have certain 
conditions applied to our groups

• We can thus us the HAVING clause to further filter our groups
▫ “SELECT colX FROM tbl GROUP BY colY HAVING cond;”
▫ NOTE: The HAVING clause can only be applied on GROUP BY columns or on 

aggregate functions

• In Class:
▫ Find the average retweet_count for verified users





Selecting Distinct Elements

• When selecting columns we can ask for distinct results, to ensure that 
there are no duplicates in the resulting data
▫ “SELECT DISTINCT(col) FROM tbl;”

• Exercise:
▫ How many dates are stored in the statuses collection?



IN Clause

• The IN clause allows us to check if a value exists in a list
▫ “SELECT * FROM tbl WHERE col in (value1, value2, . . .);”



Aliasing

• Many times it is easier or necessary to provide an alias for a column or 
table
▫ An alias is simply an alternative representation for that element

▫ “SELECT user_id AS id FROM users;”

• How do you think we alias a table? Why would we do this?



Nested Queries

• Nested queries allow us to query the results of other queries to form 
complex requests

• Nested queries can appear in a:
▫ SELECT clause

▫ FROM clause

▫ WHERE clause



Nested Queries cont.

• FROM
▫ Select avg(retweet_count), user_id FROM

(SELECT retweet_count, user_id FROM statuses

WHERE favorites_count > 500) as tmp_tbl

Group By user_id;

• WHERE
▫ SELECT * FROM statuses

WHERE user_id IN (SELECT user_id FROM users WHERE verified=1);





Adding New Information

• Frequently we will want to store new or generated information, we can 
achieve this by inserting the data
▫ INSERT INTO tbl (field1, field2, …) VALUES (value1, value2, ….);

 NOTE: You do not need to insert values for all fields

 NOTE: You do not need to provide a field list if you provide values for all fields 
in order

• INSERT INTO users(user_id, screen_name) VALUES ('001', 'Joel Klein');

• INSERT INTO Friends VALUES ('001', 'Joel Klein', '001', 'Joel Klein');



Updating Information

• Sometimes we don’t want to insert new information, but rather update
an existing record
▫ UPDATE tbl SET col1=value1, col2=value2, … WHERE cond1[, cond2, …];

 NOTE: The conditions are typically to align to the primary keys of a specific 
record

• UPDATE users SET favorites_count=78 WHERE user_id='001';





Deleting Records

• Works very similar to a SELECT clause, but we just replace SELECT with 
DELETE
▫ DELETE FROM tbl WHERE cond1, etc…;

• DELETE FROM users WHERE user_id='001'



Alter Table

• Altering a table gives us the ability to add/remove/modify a tables 
columns.
▫ We can do other things, but these are the most common

▫ ALTER TABLE tbl (Drop, Add, Modify) col (datatype);



Indexes

• Indexes are like phonebooks for your table. They store a quick lookup 
for all values in a table.
▫ Indexes can be for indexing or fulltext (for optimized text queries)

▫ Indexes can be multi-column
 In these situations queries are indexed on the first column, and then the second 

column (e.g. think “group by” statements)

▫ Indexes can be applied to any number of columns any number of times



End Slide

EMSE 6992 – DBMS for Data Analytics 





Selecting Distinct Elements

• When selecting columns we can ask for distinct results, to ensure that 
there are no duplicates in the resulting data
▫ “SELECT DISTINCT(col) FROM tbl;”

• Exercise:
▫ How many dates are stored in the statuses collection?



Aliasing

• Many times it is easier or necessary to provide an alias for a column or 
table
▫ An alias is simply an alternative representation for that element

▫ “SELECT user_id AS id FROM users;”

• How do you think we alias a table?



IN Clause

• The IN clause allows us to check if a value exists in a list
▫ “SELECT * FROM tbl WHERE col in (value1, value2, . . .);”



Nested Queries

• Nested queries allow us to query the results of other queries to form 
complex requests

• Nested queries can appear in a:
▫ SELECT clause

▫ FROM clause

▫ WHERE clause



Nested Queries cont.

• FROM
▫ Select avg(retweet_count), user_id FROM

(SELECT retweet_count, user_id FROM statuses

WHERE favorites_count > 500) as tmp_tbl

Group By user_id;

• WHERE
▫ SELECT * FROM statuses

WHERE user_id IN (SELECT user_id FROM users WHERE verified=1);


