DB Management Systems
Graph: Arango

Joel Klein — jdk514@gwmail.gwu.edu

Introduction to Arango

Arango

e Arango is a Graph based Database

= Graph Databases primarily store information about relationships between
nodes/entities

- These nodes/entities may be represented as flat information or a dictionary of
information

* The key design behind Arango (Graph Databases) is to enable people
to query data based on its relationships, rather than its underlying
information

Terminology

e Database: A group of collections

» Vertex Collection: Collection of documents defining graph nodes
= Think mongo documents

e Edge Collection: Collection of node pairings
= Similar to Join logic used in SQL

e Graph: Joint representation of vertex and edge collections

* Node (think document): Data element, containing a number of
properties and labels

* Primary Key: Document attribute that identifies the node
e AQL: Query language for Arango

Arango Graph Layout ® e

|
|
Q Scavino45 ||I ’ TiffanyATrump
/
 When we visualize a graph, we see how \ Ey Vi
H ; . i : Nz 2
different vertices (nodes) are connected via .\Kﬁt{'“acamp'"s & ':"’ &
53 N <
. . . \\\\ff' \ | /
their edges (relationships) R @ copchaiwoman
\\\\ \\ : // /E\Engs/////
. . . . _ - - ‘ LindseyGrahamSC

* As mentioned earlier, each vertex in Arango is _ fende_———""" NS

comprised of labels and properties @ Presssec e JA ~ ongs

/\\/\Q;\/ // \\fé \\\\\
e In addition to vertices, Arango also has edges. ‘/f/ dhriende '
. . . oxandiriends / \
These are on a similar level as vertices, as they J \\
/
can house data too. f ‘
= Both vertices and edges store data in JSON- @ Erctrump

like documents

Relational vs Graph

Project

title

startDate

endDate
departmentID (FK)

v

Department

ID (PK)
name

parentDepartmentID (FK)

leadPersonID (FK)

:Project

Project_Members

Department_Members

projectID (FK)
personlD (FK)
role

departmentlD (FK)
personiD (FK)

|

Person

title
startDate
endDate

:Person, :Entity

ID (PK)
entitylD (FK)
dayOfBirth

Organization

name
dayOfBirth

Entity

ID (PK)
name

ID (PK)

entitylD (FK)
departmentID (FK)
taxid

|
:IS_PART_OF

|

:BELONGS_TO \
:Dept
name

:LEAD_BY ‘WORKS_AT

AN

 taxid

Acceptable Arango Data Types

e Basic Types:
= Boolean
= Numerical
o String
= Null
« Compound Types:
o Array
= Object/Document
e Graph Structure Types
= Node
= Relationship
= Path

Querying Arango - Browser

Arango Browser

 We can query information from Arango directly from a browser
= This allows us to both query and visualize information

 You simply need to navigate to http://18.219.151.47:8529 to access the
browser based GUI
= |’|l provide the username and password in class

http://18.219.151.47:8529/

Arango Browser Cont. 1

* Once logged in, the page shown
on the right should appear

 From here you can view the
collections of data, but more
importantly we can run queries
from the QUERIES tab

<D ArangoDB USER: & DB 2 HEALTH:
COMMUNITY EDITION

B COLLECTIONS Eel

VIEWS

QUERIES 4 @
€» Add Collection

GRAPHS

LOGS
SUPPORT

HELP US

GET ENTERPRISE

Arango Browser Cont. 2

e From here we have an editor to
write and view our queries

e Certain queries will even return
a graph-based visualization
along with the data

GET ENTERPRISE

Slow Query History

USER:

(0]

DB: 5 HEALTH:

#1000 results

Key Value [EEBN

No bind

parame ters
defined.

ArangoDB Query Language

AQL

e AQL is very different than any of the previous languages we have
worked with

o |t is focused on telling Arango what to return, not necessarily how.

e |t also is unique in that it works by defining the filter/relationships, and
then defining what should be returned from the resulting set

= |t is also unique in the fact that it currently there is not a default or
dominant graph query language (Gremlin APl may be a front runner)

Before Querying

e Before writing anything in AQL, it is good to understand the structure of
the nodes and relationships in the graph. This requires understanding
the vertex and edge collections

Vertex Collections

e Users — information about users in our data
= screen_name, location, etc.

e Statuses — information about the tweets made by our users
= created date, user_id, text, hashtags, etc.

e Retweets — information about what status a user retweeted
o created_date, retweeted_status, text, etc.

Edge Collections

e Friends — details whether two users are friends
 Tweeted — what statuses where tweeted by what users

e Favorited — what statuses where favorited by what users
e Retweeted — what statuses are retweets of what statuses

Reading Documents

e Reading documents from a collection is similar to working with an
iterable in python
= FOR variableName IN collectionName RETURN variableName

e Example:
o= FOR user IN users RETURN user

Formatting the Return

e The Return statement in an AQL query can be formatted in several different
manners. For FOR user IN users RETURN we can return the following:
= user — this returns each document that exists in the users table
o user.{attr} — This returns the attribute for each user in the users table

= {attr_name_1: user.attr_1, attr_name_2: user.attr_2, ...} — This returns a new
document based on the provided attributes and names

e In Class:

= Write a query to get all the screen_name’s and their created_date in the users
collection

Filtering

e« When asking for documents (or other values) to be RETURNED, we can
filter the results using the FILTER keyword.
= FOR {var} IN {collection} FILTER {var}.{attr _name} == {cond} RETURN user

e Example:
o FOR user IN users FILTER user.statuses_count > 50000 RETURN user

Filtering Cont.

e We can Filter on a number of different aspects/attr:
o Equality: ==
o Range: >, <, >=, <=
= Logical Operators: AND, OR, &&, ||
= QOther: LIKE, IN, NOT IN, REGEX

* Note: If logical operators aren't used to join Filters, then they follow a linear order
of operation

= Example in notes

e |In Class:

= Write a query that returns the status_id, favorites _count, and retweet_count for statuses
that contain the word "Al"

Limit

e Like Mongo and SQL, we can LIMIT the number of results returned
= FOR {var} IN {coll} LIMIT {num} RETURN {var}

e Example:
o= FOR user IN users LIMIT 5 RETURN user

* The location of the LIMIT statement can drastically affect the query, as it
will limit the current resultset wherever it is placed

Sort

e Just like LIMIT, AQL also provides a means to SORT resultsets based on
certain parameters
= FOR {var} IN {coll} SORT {var}.{attr_name} [ASC|DESC] RETURN {var}

e Example:
= FOR stat IN statuses SORT stat.favorites_count DESC RETURN stat
= Note: SORT defaults to ASC ordering

Sort Cont.

e Similar to SQL, we can SORT on multiple attributes. This will sort on the
first attribute, and resolve any equivalencies using the second attribute

= FOR {var} IN {coll} SORT {var}.{attr _name_1}, {var}.{attr_name_2}
[ASC|DESC] RETURN {var}

Graph Traversals

Traversals

« When "merging" data between collections in arango, we don't join or concat
information, rather we traverse our graph.

e With a traversal we define an origin point (document) and the nature/depth
of the edges we wish to traverse
= FOR Vv, e, p [min_depth]..[max_depth] IN [ANY|OUTBOUND | INBOUND]
{start_node} {edge coll} RETURN {var}

e Example:
= FORv, e, pIN 1..1 OUTBOUND "users/44196397" tweeted LIMIT 25 RETURN p

Traversals Edge Relations

e The edge relationship [ANY|OUTBOUND | INBOUND] dictates how we
traverse relationships
= ANY — Follow any edge in the graph
= OUTBOUND - Only follow edges where the starting node is the FROM node
= INBOUND — The inverse of OUTBOUND

Traversals Depth

 The numeric values in our query dictate the depth of the search that we
perform.
= Example —1..1

e In this situation the first number is dictating the starting depth, while
the second number dictates how deep we are willing to traverse
= 1..1 ->only go one level deep
s 2..3 -> go two-three levels deep into the graph

Traversals Options

 When running traversal based queries, we can define the options for
traversing the relationships

e Options:
= uniqueVertices: [path|global|none]
- Should we terminate at a previously seen vertex
° uniqgueEdges: [path|none]
- Should we terminate at a previously seen edge

= bfs: [true|false]
* This dictates if we want to use bfs or dfs

Filtering Traversals

* We can filter our traversals based on vertex, edge, or path values.

= FORv, e, pIN 1..1 ANY {start_node} GRAPH {graph_name}
FILTER v.nodes[{index}].{attribute} == {value}
RETURN v

e This essentially enables us to focus our traversal to nodes/edges/paths
of interest

6 Degrees of Kevin Bacon

e 6 Degrees of Kevin Bacon is a game trying to link Kevin Bacon to another
actor using a maximum of 6 co-stars

e We can implement this same concept in Arango with the following:
FORv, e, pIN 1..6 OUTBOUND "users/44196397" friends
OPTIONS {bfs: True, uniqueEdges : 'path’, unigueVertices : 'path'}
RETURN DISTINCT v.user_id

e |n Class:
= |Implement the same logic for either Mongo or MySQL

https://en.wikipedia.org/wiki/Six_Degrees_of_Kevin_Bacon

Tracking Retweet Groups

e Graph traversals like this also enable us to explore how subsets of our
data aggregate together.

e Find all groups of retweet users:
For status IN statuses
FILTER status.user_id == "44196397"
FORVv, e, p IN 1..2 ANY status retweeted, tweeted
FILTER p.vertices[1].user_id !="44196397"
Return p

Advanced Features

Grouping Results

e Given that we can RETURN any formatted JSON, Arango provides a
COLLECT keyword to define lists of returned elements

e FOR varl IN coll COLLECT x = varl.attr INTO var2 RETURN var2

e Example:

o FOR tweet IN statuses
* LIMIT 100
* COLLECT favs = tweet.favorites_count INTO sid = tweet.status_id
- RETURN {fav_count: favs, text: sid}

Counting Records

e Counting documents in Arango actually requires the use of a number of
different special functions
= FOR var IN coll

* COLLECT WITH COUNT INTO len
* RETURN len

e Note: Recall that all functions occur sequentially, so filtering the results
prior to the COLLECT enables us to count filtered subsets

End Slide

EMSE 6992 — DBMS for Data Analytics

