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Introduction to Arango



Arango

e Arango is a Graph based Database

= Graph Databases primarily store information about relationships between
nodes/entities

- These nodes/entities may be represented as flat information or a dictionary of
information

* The key design behind Arango (Graph Databases) is to enable people
to query data based on its relationships, rather than its underlying
information



Terminology

e Database: A group of collections

» Vertex Collection: Collection of documents defining graph nodes
= Think mongo documents

e Edge Collection: Collection of node pairings
= Similar to Join logic used in SQL

e Graph: Joint representation of vertex and edge collections

* Node (think document): Data element, containing a number of
properties and labels

* Primary Key: Document attribute that identifies the node
e AQL: Query language for Arango
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Relational vs Graph
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Acceptable Arango Data Types

e Basic Types:
= Boolean
= Numerical
o String
= Null
« Compound Types:
o Array
= Object/Document
e Graph Structure Types
= Node
= Relationship
= Path



Querying Arango - Browser



Arango Browser

 We can query information from Arango directly from a browser
= This allows us to both query and visualize information

 You simply need to navigate to http://18.219.151.47:8529 to access the
browser based GUI
= |’|l provide the username and password in class


http://18.219.151.47:8529/
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* Once logged in, the page shown
on the right should appear
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Arango Browser Cont. 2

e From here we have an editor to
write and view our queries

e Certain queries will even return
a graph-based visualization
along with the data
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ArangoDB Query Language



AQL

e AQL is very different than any of the previous languages we have
worked with

o |t is focused on telling Arango what to return, not necessarily how.

e |t also is unique in that it works by defining the filter/relationships, and
then defining what should be returned from the resulting set

= |t is also unique in the fact that it currently there is not a default or
dominant graph query language (Gremlin APl may be a front runner)



Before Querying

e Before writing anything in AQL, it is good to understand the structure of
the nodes and relationships in the graph. This requires understanding
the vertex and edge collections



Vertex Collections

e Users — information about users in our data
= screen_name, location, etc.

e Statuses — information about the tweets made by our users
= created date, user_id, text, hashtags, etc.

e Retweets — information about what status a user retweeted
o created_date, retweeted_status, text, etc.



Edge Collections

e Friends — details whether two users are friends
 Tweeted — what statuses where tweeted by what users

e Favorited — what statuses where favorited by what users
e Retweeted — what statuses are retweets of what statuses



Reading Documents

e Reading documents from a collection is similar to working with an
iterable in python
= FOR variableName IN collectionName RETURN variableName

e Example:
o= FOR user IN users RETURN user



Formatting the Return

e The Return statement in an AQL query can be formatted in several different
manners. For FOR user IN users RETURN we can return the following:
= user — this returns each document that exists in the users table
o user.{attr} — This returns the attribute for each user in the users table

= {attr_name_1: user.attr_1, attr_name_2: user.attr_2, ...} — This returns a new
document based on the provided attributes and names

e In Class:

= Write a query to get all the screen_name’s and their created_date in the users
collection



Filtering

e« When asking for documents (or other values) to be RETURNED, we can
filter the results using the FILTER keyword.
= FOR {var} IN {collection} FILTER {var}.{attr _name} == {cond} RETURN user

e Example:
o FOR user IN users FILTER user.statuses_count > 50000 RETURN user



Filtering Cont.

e We can Filter on a number of different aspects/attr:
o Equality: ==
o Range: >, <, >=, <=
= Logical Operators: AND, OR, &&, ||
= QOther: LIKE, IN, NOT IN, REGEX

* Note: If logical operators aren't used to join Filters, then they follow a linear order
of operation

= Example in notes

e |In Class:

= Write a query that returns the status_id, favorites _count, and retweet_count for statuses
that contain the word "Al"



Limit

e Like Mongo and SQL, we can LIMIT the number of results returned
= FOR {var} IN {coll} LIMIT {num} RETURN {var}

e Example:
o= FOR user IN users LIMIT 5 RETURN user

* The location of the LIMIT statement can drastically affect the query, as it
will limit the current resultset wherever it is placed



Sort

e Just like LIMIT, AQL also provides a means to SORT resultsets based on
certain parameters
= FOR {var} IN {coll} SORT {var}.{attr_name} [ASC|DESC] RETURN {var}

e Example:
= FOR stat IN statuses SORT stat.favorites_count DESC RETURN stat
= Note: SORT defaults to ASC ordering



Sort Cont.

e Similar to SQL, we can SORT on multiple attributes. This will sort on the
first attribute, and resolve any equivalencies using the second attribute

= FOR {var} IN {coll} SORT {var}.{attr _name_1}, {var}.{attr_name_2}
[ASC|DESC] RETURN {var}



Graph Traversals



Traversals

« When "merging" data between collections in arango, we don't join or concat
information, rather we traverse our graph.

e With a traversal we define an origin point (document) and the nature/depth
of the edges we wish to traverse
= FOR Vv, e, p [min_depth]..[max_depth] IN [ANY|OUTBOUND | INBOUND]
{start_node} {edge coll} RETURN {var}

e Example:
= FORv, e, pIN 1..1 OUTBOUND "users/44196397" tweeted LIMIT 25 RETURN p



Traversals Edge Relations

e The edge relationship [ANY|OUTBOUND | INBOUND] dictates how we
traverse relationships
= ANY — Follow any edge in the graph
= OUTBOUND - Only follow edges where the starting node is the FROM node
= INBOUND — The inverse of OUTBOUND



Traversals Depth

 The numeric values in our query dictate the depth of the search that we
perform.
= Example —1..1

e In this situation the first number is dictating the starting depth, while
the second number dictates how deep we are willing to traverse
= 1..1 ->only go one level deep
s 2..3 -> go two-three levels deep into the graph



Traversals Options

 When running traversal based queries, we can define the options for
traversing the relationships

e Options:
= uniqueVertices: [path|global|none]
- Should we terminate at a previously seen vertex
° uniqgueEdges: [path|none]
- Should we terminate at a previously seen edge

= bfs: [true|false]
* This dictates if we want to use bfs or dfs



Filtering Traversals

* We can filter our traversals based on vertex, edge, or path values.

= FORv, e, pIN 1..1 ANY {start_node} GRAPH {graph_name}
FILTER v.nodes[{index}].{attribute} == {value}
RETURN v

e This essentially enables us to focus our traversal to nodes/edges/paths
of interest



6 Degrees of Kevin Bacon

e 6 Degrees of Kevin Bacon is a game trying to link Kevin Bacon to another
actor using a maximum of 6 co-stars

e We can implement this same concept in Arango with the following:
FORv, e, pIN 1..6 OUTBOUND "users/44196397" friends
OPTIONS {bfs: True, uniqueEdges : 'path’, unigueVertices : 'path'}
RETURN DISTINCT v.user_id

e |n Class:
= |Implement the same logic for either Mongo or MySQL


https://en.wikipedia.org/wiki/Six_Degrees_of_Kevin_Bacon

Tracking Retweet Groups

e Graph traversals like this also enable us to explore how subsets of our
data aggregate together.

e Find all groups of retweet users:
For status IN statuses
FILTER status.user_id == "44196397"
FORVv, e, p IN 1..2 ANY status retweeted, tweeted
FILTER p.vertices[1].user_id !="44196397"
Return p



Advanced Features



Grouping Results

e Given that we can RETURN any formatted JSON, Arango provides a
COLLECT keyword to define lists of returned elements

e FOR varl IN coll COLLECT x = varl.attr INTO var2 RETURN var2

e Example:

o FOR tweet IN statuses
* LIMIT 100
* COLLECT favs = tweet.favorites_count INTO sid = tweet.status_id
- RETURN {fav_count: favs, text: sid}



Counting Records

e Counting documents in Arango actually requires the use of a number of
different special functions
= FOR var IN coll

* COLLECT WITH COUNT INTO len
* RETURN len

e Note: Recall that all functions occur sequentially, so filtering the results
prior to the COLLECT enables us to count filtered subsets
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