
DB Management Systems
Graph: Arango
Joel Klein – jdk514@gwmail.gwu.edu

Arango

• Arango is a Graph based Database
▫ Graph Databases primarily store information about relationships between

nodes/entities
 These nodes/entities may be represented as flat information or a dictionary of

information

• The key design behind Arango (Graph Databases) is to enable people
to query data based on its relationships, rather than its underlying
information

Terminology
• Database: A group of collections

• Vertex Collection: Collection of documents defining graph nodes
▫ Think mongo documents

• Edge Collection: Collection of node pairings
▫ Similar to Join logic used in SQL

• Graph: Joint representation of vertex and edge collections

• Node (think document): Data element, containing a number of
properties and labels

• Primary Key: Document attribute that identifies the node

• AQL: Query language for Arango

Arango Graph Layout

• When we visualize a graph, we see how
different vertices (nodes) are connected via
their edges (relationships)

• As mentioned earlier, each vertex in Arango is
comprised of labels and properties

• In addition to vertices, Arango also has edges.
These are on a similar level as vertices, as they
can house data too.

▫ Both vertices and edges store data in JSON-
like documents

Relational vs Graph

Acceptable Arango Data Types

• Basic Types:
▫ Boolean
▫ Numerical
▫ String
▫ Null

• Compound Types:
▫ Array
▫ Object/Document

• Graph Structure Types
▫ Node
▫ Relationship
▫ Path

Arango Browser

• We can query information from Arango directly from a browser
▫ This allows us to both query and visualize information

• You simply need to navigate to http://18.219.151.47:8529 to access the
browser based GUI
▫ I’ll provide the username and password in class

http://18.219.151.47:8529/

Arango Browser Cont. 1

• Once logged in, the page shown
on the right should appear

• From here you can view the
collections of data, but more
importantly we can run queries
from the QUERIES tab

Arango Browser Cont. 2

• From here we have an editor to
write and view our queries

• Certain queries will even return
a graph-based visualization
along with the data

AQL

• AQL is very different than any of the previous languages we have
worked with
▫ It is focused on telling Arango what to return, not necessarily how.

• It also is unique in that it works by defining the filter/relationships, and
then defining what should be returned from the resulting set
▫ It is also unique in the fact that it currently there is not a default or

dominant graph query language (Gremlin API may be a front runner)

Before Querying

• Before writing anything in AQL, it is good to understand the structure of
the nodes and relationships in the graph. This requires understanding
the vertex and edge collections

Vertex Collections

• Users – information about users in our data
▫ screen_name, location, etc.

• Statuses – information about the tweets made by our users
▫ created_date, user_id, text, hashtags, etc.

• Retweets – information about what status a user retweeted
▫ created_date, retweeted_status, text, etc.

Edge Collections

• Friends – details whether two users are friends

• Tweeted – what statuses where tweeted by what users

• Favorited – what statuses where favorited by what users

• Retweeted – what statuses are retweets of what statuses

Reading Documents

• Reading documents from a collection is similar to working with an
iterable in python
▫ FOR variableName IN collectionName RETURN variableName

• Example:
▫ FOR user IN users RETURN user

Formatting the Return

• The Return statement in an AQL query can be formatted in several different
manners. For FOR user IN users RETURN we can return the following:
▫ user – this returns each document that exists in the users table

▫ user.{attr} – This returns the attribute for each user in the users table

▫ {attr_name_1: user.attr_1, attr_name_2: user.attr_2, …} – This returns a new
document based on the provided attributes and names

• In Class:
▫ Write a query to get all the screen_name’s and their created_date in the users

collection

Filtering

• When asking for documents (or other values) to be RETURNED, we can
filter the results using the FILTER keyword.
▫ FOR {var} IN {collection} FILTER {var}.{attr_name} == {cond} RETURN user

• Example:
▫ FOR user IN users FILTER user.statuses_count > 50000 RETURN user

Filtering Cont.

• We can Filter on a number of different aspects/attr:
▫ Equality: ==
▫ Range: >, <, >=, <=
▫ Logical Operators: AND, OR, &&, ||
▫ Other: LIKE, IN, NOT IN, REGEX

• Note: If logical operators aren't used to join Filters, then they follow a linear order
of operation
▫ Example in notes

• In Class:
▫ Write a query that returns the status_id, favorites_count, and retweet_count for statuses

that contain the word "AI"

Limit

• Like Mongo and SQL, we can LIMIT the number of results returned
▫ FOR {var} IN {coll} LIMIT {num} RETURN {var}

• Example:
▫ FOR user IN users LIMIT 5 RETURN user

• The location of the LIMIT statement can drastically affect the query, as it
will limit the current resultset wherever it is placed

Sort

• Just like LIMIT, AQL also provides a means to SORT resultsets based on
certain parameters
▫ FOR {var} IN {coll} SORT {var}.{attr_name} [ASC|DESC] RETURN {var}

• Example:
▫ FOR stat IN statuses SORT stat.favorites_count DESC RETURN stat

▫ Note: SORT defaults to ASC ordering

Sort Cont.

• Similar to SQL, we can SORT on multiple attributes. This will sort on the
first attribute, and resolve any equivalencies using the second attribute

▫ FOR {var} IN {coll} SORT {var}.{attr_name_1}, {var}.{attr_name_2}
[ASC|DESC] RETURN {var}

Traversals

• When "merging" data between collections in arango, we don't join or concat
information, rather we traverse our graph.

• With a traversal we define an origin point (document) and the nature/depth
of the edges we wish to traverse
▫ FOR v, e, p [min_depth]..[max_depth] IN [ANY|OUTBOUND|INBOUND]

{start_node} {edge_coll} RETURN {var}

• Example:
▫ FOR v, e, p IN 1..1 OUTBOUND "users/44196397" tweeted LIMIT 25 RETURN p

Traversals Edge Relations

• The edge relationship [ANY|OUTBOUND|INBOUND] dictates how we
traverse relationships
▫ ANY – Follow any edge in the graph

▫ OUTBOUND – Only follow edges where the starting node is the FROM node

▫ INBOUND – The inverse of OUTBOUND

Traversals Depth

• The numeric values in our query dictate the depth of the search that we
perform.
▫ Example – 1..1

• In this situation the first number is dictating the starting depth, while
the second number dictates how deep we are willing to traverse
▫ 1..1 -> only go one level deep

▫ 2..3 -> go two-three levels deep into the graph

Traversals Options

• When running traversal based queries, we can define the options for
traversing the relationships

• Options:
▫ uniqueVertices: [path|global|none]

 Should we terminate at a previously seen vertex

▫ uniqueEdges: [path|none]
 Should we terminate at a previously seen edge

▫ bfs: [true|false]
 This dictates if we want to use bfs or dfs

Filtering Traversals

• We can filter our traversals based on vertex, edge, or path values.
▫ FOR v, e, p IN 1..1 ANY {start_node} GRAPH {graph_name}

FILTER v.nodes[{index}].{attribute} == {value}

RETURN v

• This essentially enables us to focus our traversal to nodes/edges/paths
of interest

6 Degrees of Kevin Bacon

• 6 Degrees of Kevin Bacon is a game trying to link Kevin Bacon to another
actor using a maximum of 6 co-stars

• We can implement this same concept in Arango with the following:
FOR v, e, p IN 1..6 OUTBOUND "users/44196397" friends
OPTIONS {bfs: True, uniqueEdges : 'path', uniqueVertices : 'path'}
RETURN DISTINCT v.user_id

• In Class:
▫ Implement the same logic for either Mongo or MySQL

https://en.wikipedia.org/wiki/Six_Degrees_of_Kevin_Bacon

Tracking Retweet Groups

• Graph traversals like this also enable us to explore how subsets of our
data aggregate together.

• Find all groups of retweet users:
For status IN statuses

FILTER status.user_id == "44196397"

FOR v, e, p IN 1..2 ANY status retweeted, tweeted

FILTER p.vertices[1].user_id != "44196397"

Return p

Grouping Results

• Given that we can RETURN any formatted JSON, Arango provides a
COLLECT keyword to define lists of returned elements

• FOR var1 IN coll COLLECT x = var1.attr INTO var2 RETURN var2

• Example:
▫ FOR tweet IN statuses

 LIMIT 100
 COLLECT favs = tweet.favorites_count INTO sid = tweet.status_id
 RETURN {fav_count: favs, text: sid}

Counting Records

• Counting documents in Arango actually requires the use of a number of
different special functions
▫ FOR var IN coll

 COLLECT WITH COUNT INTO len

 RETURN len

• Note: Recall that all functions occur sequentially, so filtering the results
prior to the COLLECT enables us to count filtered subsets

End Slide

EMSE 6992 – DBMS for Data Analytics

